|
Educational resources of the Internet - Mathematics. Образовательные ресурсы Интернета - Математика. |
||
М.: 2017. - 352 с.
Предлагаемое пособие адресовано в первую очередь
тем, кто хочет успешно подготовиться к Единому государственному экзамену (ЕГЭ)
по математике профильного уровня и получить максимальный балл. Поскольку ЕГЭ -
не только выпускной школьный экзамен, но и вузовский вступительный экзамен,
который предусматривает проверку знаний по всему школьному курсу, в пособие
включены задачи и краткие справочные материалы по важнейшим темам школьного
курса математики. Особое внимание уделяется решению задач, в том числе решению
задач повышенной сложности. Пособие включает 9 параграфов. Каждый параграф
начинается с перечисления некоторых теоретических сведений с комментариями,
позволяющими вспомнить соответствующий материал. Затем приводятся примеры
решения задач различного уровня сложности и упражнения, позволяющие лучше понять
и запомнить рассмотренные способы решения задач. Заканчивается каждый параграф
набором задач для самостоятельного решения. Пособие адресовано учащимся старших
классов, оно также может быть использовано учителями математики
общеобразовательных организаций, классов, в которых математика является
профильным предметом, классов с углубленным изучением математики для подготовки
учащихся к экзаменам и проведения различных форм проверки знаний.
Формат: pdf
Размер: 3,1 Мб
Смотреть, скачать: drive.google
СОДЕРЖАНИЕ
§1. Текстовые задачи 4
§2. Логарифмы. Логарифмические уравнения и неравенства 68
§3. Показательные уравнения и неравенства 111
§4. Тригонометрические уравнения и неравенства 130
§5. Иррациональные уравнения и неравенства 183
§6. Линейные и квадратные уравнения с параметром 207
§7. Уравнения и неравенства, содержащие знак абсолютной величины (модуля) 287
§8. Метод замены множителей 313
§9. Теория вероятностей и комбинаторика 323
Текстовые задачи являются традиционным разделом экзамена по математике. Входят
они и в структуру контрольно-измерительных материалов по математике ЕГЭ и ОГЭ.
Решение таких задач позволяет проверить развитость логического мышления
абитуриента, его сообразительность и наблюдательность, умение проводить
исследования.
Решение текстовых задач обычно осуществляется в несколько этапов:
1) введение неизвестной величины;
2) составление с помощью введенных неизвестных и известных из условия задачи
величин уравнений (или одного уравнения), неравенств;
3) решение полученных уравнений (неравенств);
4) отбор решений по смыслу задачи.
Умение решать ту или иную задачу зависит от многих факторов. Однако прежде всего
необходимо научиться различать основные типы задач и уметь решать простейшие из
них. В связи с этим целесообразно рассмотреть типовые задачи и их решения.
О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."
.
1.
Начальная школа 4.
Решение задач |
||
|
||
|